References for Quantum Science Basics:

What are Bosons | Space.com | https://www.space.com/what-are-bosons

States of Matter: Bose-Einstein Condensate | Jesse Empspak | Live Science | https://www.livescience.com/54667-bose-einstein-condensate.html

Superconductivity Breakthrough: Spin Correlation Between Paired Electrons Demonstrated for First Time | SciTechDaily | https://scitechdaily.com/superconductivity-breakthrough-spin-correlation-between-paired-electrons-demonstrated-for-first-time/?expand article=1

The Universe is Always Looking | Philip Ball | The Atlantic | https://www.theatlantic.com/science/archive/2018/10/beyond-weird-decoherence-quantum-weirdness-schrodingers-cat/573448/

Quantum Networks at NIST: Glossary | NIST | https://www.nist.gov/pml/quantum-networks-nist-glossary#entaglement

How Do You Create Quantum Entanglement | Chad Orzel | Forbes | https://www.forbes.com/sites/chadorzel/2017/02/28/how-do-you-create-quantum-entanglement/?sh=2ca12f311732

Differences between quantum annealers and gate-based quantum computing | Quantum Zeitgeist | https://quantumzeitgeist.com/differences-between-quantum-annealers-and-gate-based-quantum-

computing/#:~:text=On%20the%20other%20hand%2C%20gate,problem%20and%20performing %20the%20computation

Josephson junction infrared single-photon detector | Walsh et al. | Science | https://www.science.org/doi/10.1126/science.abf5539

Stanford engineers and physicists study quantum characteristics of 'combs' of light | Taylor Kubota | Stanford University | https://news.stanford.edu/2021/12/16/quantum-view-combs-light/

Neutral Atom Quantum Computing | JILA | https://jila.colorado.edu/dzanderson/research/neutral-atom-quantum-computing

Pauli exclusion principle | Encyclopedia Britannica | https://www.britannica.com/science/Pauli-exclusion-principle

What is a Photonic Integrated Circuit? | PhotonDelta | https://www.photondelta.com/news/what-is-a-photonic-integrated-circuit/

Researchers invent first ever 3D quantum accelerometer for use in ships and submarines | Loukia Papadopoulos | Interesting Engineering | https://interestingengineering.com/innovation/first-ever-3d-quantum-accelerometer

Why Quantum Advantage & Supremacy Aren't That Complex | Rebel Brown | QCI Innovative Quantum Solutions Company | https://www.quantumcomputinginc.com/blog/quantum-advantage/

Quantum technology for military applications | Michal Krelina | EPJ Quantum Technology | https://epjquantumtechnology.springeropen.com/articles/10.1140/epjqt/s40507-021-00113-y#Sec2

Quantum algorithms: an overview | Ashley Montanaro | npj Quantum Information | https://www.nature.com/articles/npjqi201523

Introduction to the Quantum Circuit Model | Ryan O'Donnell | CMU | https://www.cs.cmu.edu/~odonnell/quantum15/lecture01.pdf

Quantum clocks: Ticking away toward a new era of precision measurement | Rebecca Pool | SPIE | https://spie.org/news/photonics-focus/marapr-2023/driving-a-new-era-of-measurement-with-quantum-clocks?SSO=1# =

Quantum 101 Glossary | University of Waterloo Institute for Quantum Computing | https://uwaterloo.ca/institute-for-quantum-computing/quantum-101/quantum-101-glossary

Deep Quantum Error Correction | Yoni Choukroun and Lior Wolf | Cornell University | https://arxiv.org/abs/2301.11930#:~:text=Quantum%20error%20correction%20codes%20(QEC C,can%20be%20detected%20and%20corrected

Quantum Computing Gate Glossary | Quantum Zeitgeist | https://quantumzeitgeist.com/quantum-computing-gate-glossary/

Gravity measurements below Gravity measurements below 10–9 g with a transportable absolute quantum gravimeter | Vincent Ménoret, Pierre Vermeulen, Nicholas Le Moigne, et al. | Scientific Reports | https://www.nature.com/articles/s41598-018-30608-1

A Better Quantum Gyroscope | APS | https://physics.aps.org/articles/v8/11

An introduction to ghost imaging: quantum and classical | Miles Padgett and Robert Boyd | The Royal Society Publishing |

https://royalsocietypublishing.org/doi/10.1098/rsta.2016.0233#d1e362

Quantum Repeaters & Memories | University of Geneva, Department of Applied Physics | https://www.unige.ch/gap/qic/qram/quantum-memories

Quantum Neural Networks | Emily Chen & Angela Zhao | Medium | https://medium.com/mit-6-s089-intro-to-quantum-computing/quantum-neural-networks-7b5bc469d984

The quantum receiver the first to detect entire radio frequency spectrum | The Army Research Laboratory | https://phys.org/news/2021-02-quantum-entire-radio-frequency-spectrum.html

The Mysteries of Quantum Teleportation Explained | James Dargan | The Quantum Insider | https://thequantuminsider.com/2023/05/24/quantum-teleportation/

Quantum Tunnels Show How Particles Can Break the Speed of Light | Natalie Wolchover | Quanta Magazine

Explore gates and circuits with the Quantum Compose | IBM Quantum Learning | https://learning.quantum.ibm.com/tutorial/explore-gates-and-circuits-with-the-quantum-composer#term-QASM

It's been 20 years since "15" was factored on quantum hardware | IBM | https://research.ibm.com/blog/factor-15-shors-algorithm

Quantum Computing 101: Introduction, Evaluation, and Applications | IonQ | $\frac{\text{https://ionq.com/resources/quantum-computing-}101-\text{introduction-evaluation-}}{\text{applications\#:}\sim:\text{text=}Coherence\%20\text{time\%20is\%20a\%20\text{measurement,\%E2\%80\%94\%20\text{essenti}}}}$ ally%2C%20a%20qubit's%20lifespan

Rydberg Physics | Purdue University | https://www.purdue.edu/discoverypark/quantum/projects/rydberg-physics/

Quantum Dots and their Application as Electron Spin Qubits | Mark Neal | Bowers Silicon Photonics Group | https://fullstackquantumcomputation.tech/blog/quantum-dots/

Quantum Computing Modalities – A Qubit Primer Revisited | The Quantum Leap | Russ Fein | https://quantumtech.blog/2022/10/20/quantum-computing-modalities-a-qubit-primer-revisited/

QC- How to build a Quantum Computer with Trapped Ions? | Jonathan Hui | Medium | https://jonathan-hui.medium.com/qc-how-to-build-a-quantum-computer-with-trapped-ions-88b958b81484

What is a Universal Quantum Computer? | Jack Krupansky | Medium | https://jackkrupansky.medium.com/what-is-a-universal-quantum-computer-db183fd1f15a

Explainer: What is a wave-particle duality | Tim Davis | The Conversation | https://theconversation.com/explainer-what-is-wave-particle-duality-7414

Videos:

The Map of Quantum Computing – Quantum Computing Explained | Domain of Science https://youtu.be/-UlxHPIEVqA?si=iNSw7v mubxy2fa7

Atomic Energy Levels | Quantum physics | Physics | Khan Academy | https://www.youtube.com/watch?v= vK5KPycEvA

Bose-Einstein Condensate: The Quantum BASICS - Bosons and their Wave Functions | Quantum Physics by Parth G | https://www.youtube.com/watch?v=lBpxQdikm0w

Bose- Why Quantum Mechanics Makes No Sense (But Still Works) - Collapse of the Wave Function | Quantum Physics by Parth G | https://www.youtube.com/watch?v=Is QH3evpXw

The SECOND Most Important Equation in Quantum Mechanics Eigenvalue Equation Explained for BEGINNERS | Quantum Physics by Parth G | https://www.youtube.com/watch?v=zejh5yNkFpc

Physics of Quantum Annealing – Hamiltonian and Eigenspectrum | D-Wave | https://www.youtube.com/watch?v=tnikftltqE0

What is Quantum Annealing | D-Wave | https://www.youtube.com/watch?v=zvfkXjzzYOo

What's a Hilbert space? A visual introduction | Physics Duck | https://www.youtube.com/watch?v=yckiapQlruY

Identical particles in quantum mechanics | Professor M does Science | https://www.youtube.com/watch?v=1cll3m-fmnY