MITCHELL INSTITUTE,

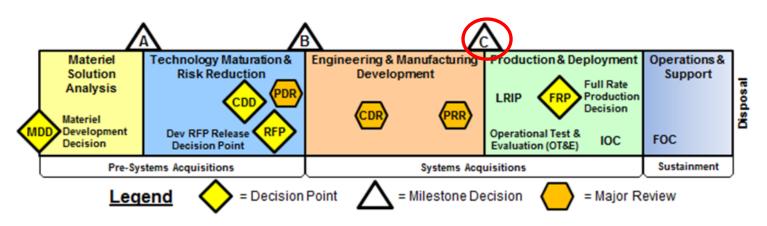
for Aerospace Studies

From EMD to Milestone C and Beyond: Common Issues Affecting Aircraft Programs

Lt Gen Mark D. Shackelford, USAF (Ret.)

Overview of the Study

- Why do aircraft programs struggle to move from development to full production?
- Paper developed from series of case studies on aircraft programs
- Study assessed programs at MS-C, when programs transition from development into production


- Eight Case Studies:
 - B-1B Bomber
 - C-17 Transport
 - A-12 Attack Aircraft
 - B-2 Bomber
 - F-22 Fighter
 - *F/A-18 E/F Fighter*
 - F-35 Joint Strike Fighter
 - KC-46 Tanker
- Common issues plagued every program except F/A-18 E/F
- Issues are usually overcome, but drive cost and schedule growth

What systemic issues contribute to increased costs and delays?

What is Milestone C (MS-C)?

- At MS-C, "a program is reviewed for entrance into the Production & Deployment phase"
- MS-C affirms that design is mature and meets requirements
- Programs often experience major challenges after MS-C
- Significant development work often occurs after MS-C
- Hence, the study examines transition from EMD to MS-C and Beyond

MS-C best understood as a process rather than a single event

Common Issues in the Case Studies

Common issues that caused programs to struggle at MS-C and Beyond:

- 1. Poor communication and transparency between the government and contractor
- 2. Unstable requirements or unstable funding
- 3. Lack of production-representative assets and insufficient testing
- 4. Poor management decisions that disrupted program stability

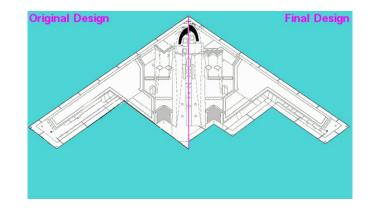
Program	Poor Communications and Transparency	Requirements and Funding Instability	Lack of Representative Test Assets and Insufficient Testing	Poor Management Decisions
B-1B (USAF Bomber)		X	X	X
A-12 (USN Carrier Attack)	Х		X	X
C-17 (USAF Transport)	X	X	X	X
F-22 (USAF Fighter)	X	X	X	X
B-2 (USAF Bomber)		X	X	X
F-35 (USAF/USN/USMC Fighter)	Х	X	X	X
KC-46 (USAF Tanker)	Х		X	X
F/A-18 E/F (USN Carrier Fighter)				

Many programs struggled, but only one program (A-12) outright cancelled

Poor Communication and Transparency

- Developing new aircraft is inherently risky
- Government and industry should be partners in proactive risk management
- Requires accountability and trust
- Poor communication and transparency undercuts trust
- An "arms length" relationship does not permit flexible problem-solving
- Also required between primes and subs

Example from the case studies:


The C-17 program experienced a breakdown in trust and communication between government and the contractor that was not solved until OSD intervened.

Failure to establish trust <u>early</u> increases risks to program execution

Requirements & Funding Stability

- Requirement definition and cost estimates should (but don't always) establish a stable programmatic baseline
- Added requirements can force expensive, lengthy redesigns
- Funding can be underestimated, redirected by Service, or cut by Congress
- Unstable requirements and funding often increase costs and cause delays
- Instability leads to lower procurement quantities and higher unit costs

Example from the case studies: New requirements demanded a fundamental redesign of the B-2 bomber that added considerable delay and drove up costs.

Unstable requirements and unpredictable funding can increase program costs and delays

Production-Representative Test Assets

- MS-C coincides with initial operational testing
- This testing often uncovers problems
- Lack of representative test aircraft can delay realistic testing
- Common issues:
 - Insufficient time allocated for testing
 - Production contract awarded before testing reveals issues
 - Production aircraft require costly retrofits

Example from the case studies:

B-1B production began prior to major testing. After testing revealed problems, production aircraft needed expensive retrofitting.

Insufficient margin for realistic testing can lead to schedule/cost growth

Shortfalls in Program Management

- Management choices can make or break a program
- Both prime and government have management responsibilities
- Examples of poor management:
 - Changing facility locations during EMD
 - Poor oversight of major subcontractors
 - Underinvesting in engineering discipline
 - Cutting corners on quality control processes
- Most common government management failure is lack of effective oversight

	Lockheed Martin Fort Worth (formerly GD)	Lockheed Martin Marietta (Overall weapons system integration)	Boeing Seattle
Airframe	Center fuselage Armament	Foward fuselage Vertical tails Flaps Landing gear Final assembly and checkout	Wings Aft fuselage APU
Avionics	Electronic warfare CNI (TRW) Stores management system Internal navigation system	Avionics architecture Controls and displays Air data system Apertures	Avionics subsystem integration lab Flying test bed Radar (NGC)
Support	Support system		Training system

SOURCE: Lockheed Martin F/A-22 website.

Example from the Case Studies:

The development of the F-22 was split between several sites/companies, creating an inefficient division of labor and delaying deliveries of test aircraft.

Complex programs falter without strong, experienced managers

Active Contract Management Can Help

- Active Contract Management is a framework for program management
- Government must be able to understand and assess program data
- Government should change its contract or program approach as needed
- Communication should be open and frequent
- Goal is partnership and accountability
- Trust enables everyone to focus on delivering capability within cost and schedule goals

Active Contract Management is a set of strategies developed by the Harvard Government Lab for improving contract outcomes through data and purposeful management of contractors

KC-46: an example of an inflexible approach to risk management

Active Contract Management is an adaptive approach to managing risk

How did F/A-18 E/F Avoid These Issues?

- Good relationship between government and contractor
- Integrated Product Team
- Management was data-informed
- Requirements strictly controlled
- Stable funding
- Seven test asset aircraft, ample time to test
- Logical workshare arrangement
- Sufficient management reserve

F/A-18 E/F avoided issues through partnership and strong management

Considerations for Future Programs:

- 1. Establish government-contractor trust and good communications early
- 2. Maintain stable requirements and predictable funding
- 3. Ensure sufficient production-representative test assets are available and sufficient time to conduct testing
- 4. Government and contractor need strong, experienced management
- 5. Active Contract Management can foster a collaborative and datainformed management culture

Future acquisition programs can use these principles to achieve a balance between speed, capability, and affordability

Delivering programs on time and budget requires flexible & disciplined approaches to program and contract risk management

www.mitchellaerospacepower.org